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VARIATIONAL A P P R O A C H  TO C O N S T R U C T I N G  

H Y P E R B O L I C  M O D E L S  OF T W O - V E L O C I T Y  M E D I A  

S. L. GavrUyuk and Yu.  V .  Perepechko I UDC 530.1,531.31 

A generalized Hamilton variational principle of the mechanics of two-velocity media is 
proposed, and equations of motion for homogeneous and heterogeneous two-velocity continua 
are formulated. It is proved that the convexity of internal energy ensures the hyperbolicity of the 
one-dimensional equations of motion of such media linearized for the state of rest. In this case, 
the internal energy is a function of both the phase densities and the modulus of the difference 
in velocity between the phases. For heterogeneous media with incompressible components, it is 
shown that, in the case of low volumetric concentrations, the dependence of the internal energy 
on the modulus of relative velocity ensures the hyperbolicity of the equations of motion for any 
relative velocity of motion of the phases. 

In t roduc t ion .  At least three approaches to constructing mathematical models of two-velocity media 
are known at present. The averaging method is used most widely, especially to constructing models of motion 
for heterogeneous two-velocity media. A distinguishing feature of heterogeneous media is that each phase 
occupies only part of the volume of the mixture, unlike in homogeneous mixtures, in which each phase is 
uniformly distributed over the entire volume of the mixture. Applying an appropriate averaging operator to 
the equations of conservation of mass, momentum, etc. that are valid within each phase, one obtains averaged 
equations of motion. The main problem that arises in this approach consists in closing the resulting system: 
the system contains more unknowns than equations. Different experimental and theoretical assumptions on 
the flow structure, the mechanism of interaction between the phases, etc. [1-3] (see also a review [4]), are used 
for closing. As was noted by many authors [5, 6], if the pressure in the phases coincide, the corresponding 
equations of motion in a nondissipative approximation turn out to be nonhyperbolic even when the relative 
difference between the phase velocities is slight. This means that the Cauchy problem for the corresponding 
nonlinear equations of motion is incorrect. 

In [7-9], hyperbolic (nonequilibrium in pressure) models of two-layer liquid flows were obtained by 
the averaging method. For closure of the equations of motion, a series of hypotheses relating the pressure 
and velocity at the interface between the liquids to their average values in the layer were invoked [7], or the 
process of mixing of the liquid at the interface was taken into account by introducing a third liquid layer 
[9]. An interesting two-velocity model of a bubble liquid which takes into account oscillations of bubbles is 
proposed in [10]. In the approximation of an incompressible liquid and a small bubble concentration, the model 
is hyperbolic for a low relative velocity of the bubbles and gives steady wave modes. Interesting hyperbolic 
models are also proposed in [11-14]. Their hyperbolicity was reached using closing relations, which are usually 
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specific to the type of flow or by introducing additional "artificial" terms in equations to predict the correct 
mechanism of interphase interaction. 

The second method, known as the Landau method of conservation laws, was originally used to construct 
models of quantum liquids - -  superfluid helium [15-17]. The essence of this method is that the requirement 
that the laws of conservation of mass, momentum, energy, and entropy be satisfied, supplemented by the 
Galilean principle of relativity, allow one to completely determine the equations of motion of a two-velocity 
medium. Recently, this approach was used to construct the equations of motion of classical liquids - -  two- 
velocity hydrodynamics [18-22]. In particular, in [19], the corresponding equations of motion of a two-liquid 
medium in a nondissipative approximation are also hyperbolic for the case where the pressures in the phases 
coincide. 

Finally, an effective method of obtaining the equations of motion of two-velocity media is the variational 
method [23-29]. As a rule, the  varied functional is the operation after Hamilton: the Lagrangian of a system is 
the difference between the kinetic and potential energies of the system. Actually, it is not possible to separate 
the total energy of a two-velocity continuum into kinetic and potential energies. Formal separation of the 
energy into kinetic and internal energies is ambiguous but, at any definition, the internal energy is a Galilean 
scalar, which can depend not only on thermodynamic variables but also on the modulus of the velocity of 
relative motion of the phases w. In this case, the variational approach changes significantly. The Lagrangian of 
the system must be formulated as the difference between the kinetic energy and the thermodynamic potential, 
which is related to the internal energy by a partial Legendre transform with respect to the variable w. 

The fact that  the Lagrangian of a two-velocity system must include additional terms that  depend on 
the modulus of the relative velocity was pointed out in some particular cases (flow of a liquid with gas bubbles) 
in [24, 26-28]. The hyperbolicity of the resulting equations for a low relative velocity of phases is proved in 
[27, 28]. 

We derive the equation of motion for a two-velocity continuum on the basis of the generalized Hamilton 
principle, requiring convexity of the internal energy with respect to the sought variables [30]. In particular, 
convexity of internal energy, indicating thermodynamic stability of the medium, ensures hyperbolicity of the 
equations of motion of a two-velocity medium linearized on a zero hydrodynamic background. 

1. Va r i a t i ona l  A p p r o a c h  to  D e s c r i b i n g  T w o - V e l o c i t y  M e d i a .  We consider a two-liquid medium 
that is characterized by velocities ul  and u2 and densities pl and p2 of its components and internal energy 
U. A fundamental difference between a two-velocity medium and a single-velocity medium is the dependence 
of internal energy on velocity: the internal energy U depends on the modulus of the Galilean invariant - -  the 
relative velocity w = u2 - u l .  The presence of this dependence changes the variational principle qualitatively. 

Elementary Example. We consider a weight on a nonlinear spring. The equations of motion have the 
form 

d 0F(x) 
p(i)  + 0----g- = 0, 

where p(k) is the momentum of the weight and F(x) is the potential of the spring. The integral of the energy 
and the Lagrangian have the form 

k 

E = - f p(U)du + F(x), = f p(u)au - F(x). 

It can easily be seen that they  are related to one another by a partial Legendre transform with respect the 
variable k: 

E = ~Li - L. 

From the last relation it follows that  the natural variables for the energy E are the variables x and p, 
and not the variables x and k, E = E(z,p). 

Variational Principle of the Mechanics of a Two-Velocity Medium. The total energy of a two-velocity 
system is written in standard form E = pl ]u112/2 + p2[u2]2/2 + U. 

The energy of the system E is usually divided into kinetic and internal energies. This is achieved by 
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conversion to a moving system in which the elementary volume of the continuum is at rest. The total energy 
of the medium in this system is assumed to be the internal energy of the medium U. For two-velocity media 
there is no coordinate system in which motion can be eliminated. As a consequence, the use of the standard 
definition of internal energy leads to the dependence of the Galilean invariant - -  the modulus of the difference 
between the velocities of the medium component w = u2 - ul. 

Thus, the internal energy U of a two-velocity medium is a function 
thermodynamic parameters, including the relative momentum i - -  a Galilean 
variable that is conjugate to the velocity w: 

U --  U ( p l ,  p2, I l l ) .  

of additive independent 
invariant thermodynamic 

In the adiabatic approximation adopted there is no dependence on entropy. 
Using a Legendre transform, it is possible to introduce the thermodynamic potential W = 

OU 
W=U-(i,w), w =  0i" (1.1) 

Knowing the thermodynamic potential W as a function of pl, p2, and Iwl, it is possible to define the 
internal energy of the system: 

OW 
i=--@---~-. (1.2) - -  , W  , 

D e f i n i t i o n s  (1 .1 )  a n d  (1 .2)  c a n  b e  r e p r e s e n t e d  as  

aw ou 
w = U - ito, U = w + iw ,  i = lil, to = Iwl ,  i = - ~  w = 

Ow ' O i  " 

The example of the weight-spring system shows that in order to formulate an analog of the Hamilton 
principle of least action for a two-velocity continuum, it is necessary to consider the Lagrangian of the two- 
velocity system 

L = a,  lu,12/2 + pzluzl2 /2  - w (a , ,a2 ,  Iwl). (1.3) 

Lagrangian (1.3) allows one to formulate the variational principle of the mechanics of a two-velocity 
medium: 

t2 

, J r  + ~ P 2  lu212 W(pl , pz,[wl))dxdt=O. (1.4) 

t l  Rn 

Generalized Variational Principle. In the general case, the internal energy of complex media U can depend 
on the time derivatives of thermodynamic variables, the modulus of the Galilean invariant w, etc. (see, for 
example, [31], where examples of media whose internal energy depends on the total derivative of density with 
respect axe given. 

The variational principle for these media should be formulated on the basis of a functional that 
represents the difference between the kinetic energy of the system K and the thermodynamic potential W. 
The latter is related to the internal energy of the system U by a partial Legendre transform with respect to 
the variables ~, which are conjugate to the time derivatives: 

t2 

( K  - W ) d x d t  = o, V --  W 

t lR  n 

2. Var ia t ional  A p p r o a c h  to  Describing Two-Veloci ty  H o m o g e n e o u s  Media .  We consider 
two mixed liquids whose motion is characterized by their velocities ul and us, densities pl and p2, and 
internal energy U. The word "mixed" means that the volumetric concentration of the material is not a sought 
parameter, i.e., each component occupies the entire volume of the mixture equivalently with the others. Such 
multiphase media are called homogeneous media. 
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We consider the case of a mechanical system where the entropies of the media are not sought parameters. 
In addition, we ignore the dependence of energy on derivative thermodynamic values. Vv'e are interested in 
the equations of motion of the medium in which the internal energy depends on the relative velocity. 

Variational Principle and Conservation Laws. The Hamilton principle of least action for a two-velocity 
homogeneous continuum is written in the form (1.4): 

t2 
~ / /  (~pllUl,2.-~-2p21u212-W(pl,p2,w))dxd~ :0.  (2.1) 
tlR n 

Here the potential W(p~, p2, w) is related to the volumetric internal energy of the system U(p~, p2, i) by the 
partial Legendre transform (1.1) and (1.2). 

As restrictions to (2.1) we add the equations of conservation of mass for each phase: 

CO px cop2 
:h~ -- ~ + div(p~u~) = 0, :M2 = - ~ -  + div(p2u2) = 0. (2.2) 

Introducing Lagrangian multipliers ~1 (t, X) and ~2(t, x), we consider the Lagrangian of our system L, 
determined with accuracy up to the divergent term: 

d2 ~2 dl~i'~ p2(llu212 ~" ] L = p l ( l l u l l  2 ~ ] + -W(p l ,P2 ,W) .  (2.3) 

Here the operators di/dt are given by the formulas 

di 0 
d--t = CO'~ + (ui, V). (2.4) 

For simplicity, we shall use Cartesian coordinates {x/:}, k = 1, 2, 3. Summation is performed over recurring 
indices. 

For each phase, we introduce Lagrangian coordinates {~}  and {,b} (~, b = l, 2, 3): 

o~" ~,~ co~a o,7 b ~,~ ov b 
0t + ~ = 0 ,  Ot + ~ = 0 .  

COvb 0 ~ ,  O~k = c%b z !' COzk z i' Cozk 
v b = - ~ ,  ~,~ = ~ -~k, ,~(r -#~, ,b(.) = Cove. 

We designate 

CO~a 

~? = -8F' 

(2.5) 

(2.6) 

Where the context is clear, we shall write z,ka or Z,kb, omitting the dependence on ( or 7/. From (2.5), (2.6) we 
obtain the relations 

= - ~ t  ,a(G' = -  1",~(~), = X k 

a ~  - ,'(~)' a~,~ (2.7) 

= - Th  Z'b(")' Orl~ = -- ,b(.), C&l,~ = 2 ,b(.)" 

We consider the Lagrangian L ~ven  by formula (2.3) as a function of the variables ~, ~ ,  ,~, ~,~, ~, ,  
~1,k, ~2t, ~2,k, Pl, and p2. The subscript t denotes the partial time derivative CO/0L 

We define the variational derivatives 

L a - - ~  a - - , L b - - , . , , !  = - -  , 

~fL = cOpi + cO (piu~), ~L 1 di~i COW 
i~"---~w COt ~ i~,--Sp~ = ~ luil 2 dt COp~" 

Equating them to zero and eliminating Lagrangian multipliers, we obtain the required equations of motion. 
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The invariance of the Lagrangian with respect to shifts in spatial variables leads, according to the 
Noether theorem [32], to divergence of the expression 

_ _  a b 
~m =~,mLa + o,mL6 + ~?l,mL~ + ~2.mL~2 + Pl,mLpt + P2,mLa2 

O (  OL , OL OL OL ) 
+ ~ - C-, oC ~ '~," 0 , ~  ~ ' "  0~1,~ ~%" ~ + z, ,~ . (2.s) 

The invariance of the Lagrangian with respect to shifts in time leads to divergence of the expression 
(the minus sign is used for convenience): 

F.= - ~ La - rl~ Lt, - ~oltL~o~ - ~p~tL~,~ - pltL~l - p2tLp~ 

0 (  0, 0, 0, 0L) 
+ ~ ,q' ~ + ,~ ~ + ~,, ~ + ~ ,  ~ �9 (2.9/ 

The divergence of (2.8), (2.9) can be verified by direct calculations. 
Since the variational derivatives vanish, Eqs. (2.8) and (2.9) are conservation laws: Eq. (2.8) is the law 

of conservation of the momentum j = plul + p2u2 and Eq. (2.9) is the law of conservation of the energy E. 
We derive an explicit form of Eqs. (2.8) and (2.9) in terms of the sought variables. 

From the definition of the variational derivatives, we obtain 

plLp I + p2Lp 2 = p x ( l l u l [  2 d2~o2~ 

OW OW ( OW OW ) 

Hence it follows that on the extremal the following equality holds: 

aw o w  
L = pl ~ + p2 ~ - w. (2.10) 

We designate w k = u~ - u~ .  Using relation (2.7), we have 

aL 
_~,am{ k ~wk Z,a + k,a} plttlrn "4" ~W m plcPl,m, 

= p l u l k ( - z , ~ ) -  OW ~ OW 
-~'% o~t p ~ , k =  = - - -  

OL OW OL OL 

OL OW ~ 
- -  P 2 ~ 2 , m  2~ --~rn ~ = p2U2m t~k -- --Otom ~t2 Uk 

OL ~ OL 
- ~ 1 "  0~,~,~ - pl ~oi,,,u~ , -~2,,n O~2,k - p2~o2,,,,u~. 

Then, Eq. (2.8) leads to the following equation for the total momentum of the medium: 

0 0(  ) 
~ = N ( P l ~  + e~,,~.,) + ~ ~ + e ~ 2  ~ - ~ + ~ = 0. Ow m 

It is obvious that the introduced Lagrangian function L coincides with the thermodynamic definition of the 
pressure in the system. 
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Using relation (2.10), we write 

( (0w 0w )) 
~---- ~'~(plUl -1- p2U2)-t- d iv  plu~ |  + p 2 u 2 |  ~ w @ W  q- Pl ~ P l  q- P2 ~ - W I = 0, 

where | is a tensor product and I is a unit tensor. 
Similarly, 

OL OW k k 
~ b-~ = mlull2 + b-'~w ~ u l  - p l~o l , ku l ,  

OL OW uk 2 P2~2,ku k2, ~'~ 0~---~ = p21u21~-  0 ~  - - - r  - 

O W  i k  OL lull2u~ q_ ~_~W/UlU I i k = -- pl~Ol,ittltt 1 , 

OL OW i k 
- -  = -- p2~o2,iU2U2, rl~ Ortbk p21u212u~ _ _~.~wiu2u 2 i k 

OL 
~O]t Otpl t --Pl~I~, 

OL 
~02t OtP2t = --P2~2t, 

OL _qo,tPluk, 
qolt 0r = 

O L _~2tP2uk2 . ~o2t Otp2,k = 

(2.11) 

Substituting the formulas obtained above into (2.9) and using the definition of L, we finally have 

0 1 p21U212 ..i. W - ~_____.W) div(plUl (L ~ o w  ~ =  ~ ' ~ ( l p l l U l [ 2 +  W - -  + + ~ f l l )  

+p2u2 § ~-P2 ] - ( u 2 |  ul |  =0 .  (2.12) 

Here the operation AIb I denotes multiplication of the tensor A by the vector b. 
The equations of motion of the phases are obtained by a standard method. We consider the expression 

,, 0 0 L  0 OL 

Direct calculations lead to the equation 

Since from the relation L m = 0 it follows that 

dlcpl 1 12 OW 
dt = 2[ul  Opl'  

we obtain the following equation for ul: 

Pl ~ + P, Itk ~ + -~ ~W m + ~X k ~W m OW k OT.m 

This equation in vector form is written as 

- - + t o O -  ~ =0. 

( 0111 ) Oi-div(i| P' W -~- (Ul" V)Ul -- ~ = O. 

ow (ou, y 
i = - O--w' V u l  = k a x  ] 

Here  

OW Ou~ 
Ow k Ox m - -  + p 2  ~ - ~  = o ,  

(2.13) 

(the superscript asterisk denotes conjugate mapping). 
Similarly, for the second phase, we obtain 

Ou2.~ Ou2.~ 0 OW 0 l O W  k~ 
P2 ~ + p2uk2 0z  k Ot ( ~ w ~ )  - 

689 



or in vector form 

r0u  ) 0, 
P2\  Ot + ( u 2 - V ) u :  + ~ - ~ + d i v ( i |  +p2~7 ~ = O. (2.14) 

We finally write the conservation laws (2.2), (2.11), and (2.12) as the system 

Opl Op2 
Ot + div(plu])  = 0, 0--t- + div(p2u2) = 0, 

O-'~(pluI+p2u2)+ div p lUl@Ul+p2u2@u2--"~-~w@W+I pl-~pl+P2-~p2 - W  =0,  

O 12 + w -  Ow ([~_~ Ow 

+ p2u2 + - (u2 | u2 - u] | ul ) = 0. 

From (2.12), in particular, it follows that  the definition of the variational principle in-the form (1.4) gives a 
correct definition of the total energy of the system: 

1 1 OW 
E =  5pllu~12+~p21uzl2+u(p~,p2,i), u(m,p2,i)= W - w i ,  i=  

Let U(pl, p2, i) satisfy the condition of thermodynamic stability of the medium. 
C o n d i t i o n  S: The function U(pl, p2, i) is a convex function of its variables. 
As a consequence, W(pl,p2,w) is convex with respect to the variables Pl and p2 and concave with 

respect to the variable w. 
System of Equations for Plane Waves. In the one-dimensional case, the system of conservation laws (2.2), 

(2.11), and (2.12) is closed if the internal energy of the medium is specified. We investigate the type of this 
system. We designate ul = ul,  u~ = u2, z I = x, and w = u2 - ul; the subscript t corresponds to O/Ot and 
the subscript x corresponds to O/Ox. 

We adopt a simplifying assumption on the form of the internal energy U(pl, p2, i). 
C o n d i t i o n  A: The function U(pl, p2, i) has the form 

i 2 aw 2 
U(pl, P2,i) = e(pl, P2) + ~a = e(pl, p~) + 2 

(a is a positive constant). 
From condition A it follows that 

a w  2 
W = e(m, m) 2 

Then, from (2.13) and (2.14) we have 

dlua dlw 
Pl " ~  - a ~ - 2awua, + pl(e l ) ,  = O; (2.15) 

d2u2 d2w 
P2 - ~ -  + a - ~ -  + 2 a ~ 2 ~  + p2(e2)z = 0, (2.16) 

where ei = Oe/Opi. 
Thus, with allowance for (2.15) and (2.16), the desired equations for one-dimensional motions with 

plane waves take the form 

Plt + UlPlz + ulxPl = O, P2t + u2P2z + u2zP2 = O, 

p l ( U l t  n t- U l t t l x  ) - -  a(Wt "4- Ul tOz)  - -  2awul~: + pl(ellPlz + t~12P2z) = O, (2.i7) 

p2(u2t + uzu2x) + a(wt + u2wz) + 2awu2z + P2(s12P]~ + e22P2~) = O, 

where e i j =  02~/OpiOpj. 
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Hyperbolicity of the Equations of Motion of Two-Velocity Homogeneous Media. System (2.17) can be 
written in matrix form 

where 

Aut + Bu~ = O, 

u=(pl ,m,u l ,u2)  t, 
1 0 0 0 ) 

A =  0 1 0 0 
0 0 Pl + a  - a  ' 
0 0 - a  p 2 + a  

B = 

It is easy to compute that  

ul 0 
0 u2 

pl~ll p1~12 
P2s P2~22 

where 

. ,  0 ) 
0 P2 

(Pl + 3a)ul - 2au2 - - a u l  " 

-au2  (P2 + 3a)u2 - 2aul 

1 0 0 0 
A_ 1 0 1 0 0 

= 0 0 (p2 + a ) / ~  a /6  
o 0 a /~  (pl + ~ ) / ~  

C = A - 1 B =  

ul 0 Pa 0 
0 u2 0 P2 
m n  m12 dn  d12 
m21 m22 d21 d22 

= (p~ + a)(p2 + a) - a2 > 0, 

M n  - pl(p2 + a) e n  + ap2 MI2 = pl(p2 + a) ap2 T ~12, ~ ~12 -I- T 6"22' 

am p~(m + a) ap~ m(p~ + a) 
m21 = "-ff'-gll + ~ g12, m22 = "-~-'e12 + 

d n  = us - (P2 + a)(pl + 3a)w a(p2 + 3a)w 
6 , d12 = 6 ' 

d21 = a(pl + 3a)w d22 = ul + (pl + a)(pa + 3a)w 
6 ' 6 

t~22) 

The eigenvalues of the  matrix C are determined by solving the equation det IC - M[ = 0. We consider 
a simplified form of the corresponding fourth-order polynomial in the variable ~ obtained by linearization 
of the system in a neighborhood of the point u ~ = u ~ pO, pO. Without loss of generality, we assume that 
u~ ~ = u ~ = 0 (below, the superscript 0 is omitted). Since dii vanishes in the linearization, the polynomial takes 
the form 

A 4 -- A2(p2rn22 + plrnll)  + plP2(rnllrn22 -- m21rnl2) = 0. 

To confirm that  all roots of Eq. (2.18) are real, it suffices to verify that  

p2rn22 + p lml l  > 0, rrtllm22 - -  m21rr~12 > 0 ,  

(p2m22 + p lml l )  2 -- 4plP2(mllm22 -- m21m12) > 0. 

The first inequality is verified directly: 

p22(pl +a )  , aplP2 pl2(p2-I-a) 
aplP2 612-1" e22"1- T el2-I ~11 = P2m22+plmll = 6 6 g 

where (ep, p) denotes the positive definite quadratic form 

(ep, p) = ellpl 2 + 2~12plp2 -4- e22p22. 

(2.18) 

plp22e22-I-p2p12ell a 
+ ~(ep, p) > o, 
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The second inequality is also verified by direct calculations: 

rnllrn22-rn12rn21 = ( pl(p2+a)~ ~11 + ~-612)aP2 "~(~.~e12 + p2(Pl +a)  ~2'z 

(pl(P2+a)~ ~12 + ~ap2 ~22)[apl  p 2 ( p l T a ) )  - ~ - ~ - ~ n  + ~12 

= \ = ( 1 ~ - ~ . )  > O. ~2 

And, finally, 

(p2rn22 + plml l )  2 -- 4plP2(mllm22 -- rn21m12) 

(plP22C22 "t- p2P12s a 2 2 -'1- ~ (p12~ll -[" 2plP2~12 -[- P2 ~22) / 4p12p22 
% 

p12p22 a 2 

+ (P2e22 + Plell)  2 -- 4plP2(elle22 -- e122)) = --p12p22(~ f(a) ,  

where f(a) denotes the second-order polynomial in a 

f (a)  -" a2($p'p)2 + (P2522 + Pl8ll) 2 -- 4plP2(611~22 -- $22) 
p12p22 

( 2(pl--t-P2)PlP2(s ) 
+ 2a(ep, p) P2e22 + Ple11 -- 

PlP2 (~P,P) 

f (  P) 2(pl -{- P2)PlP2(ell$22 - -  s 2 
- -  | a s  "[" P2522 -t" P l ~ l l  - -  

\ PlP2 (ep, p) } 

4(pl "[- P2)PlP2(Plgll "~ P2E22)(s -- ~:122) + 
(~p,p) 

- -  4 ( p l  -I" p 2 ) 2 p 1 2 p 2 2 ( e l l , f 2 2  - -  ~122) 2 - -  4 p l P 2 ( $ l l s  - -  ~22)" 
(ep, p) 2 

If the function g(PlP2) = 4((pl -[" P2)(PlfI1 "['P2f22)(~P,P) -- (gP, P)2--PlP2(P1 + p2)2('fll$22 -- f22))PlP2(gll~22 -- 
$212)/($p,p)2 iS nonnegative for all Pl, /~ > 0, then f(a) is nonnegative for all a i> 0. The latter is proved by 
the following calculation. We designate z = pl/p2. Then, --(Cll z2 -~- 2~12Z "F e22) 2 -- Z(I -~- Z)2(s163 -- ~122) -F 
(1 + z ) ( e n z  + r  2 + 2el~.z + e22) = z ( e n  - e22 + e n z  - e12z) 2 >t 0 for z > O. Thus, g(pl,  p2) >10. This 
implies that our system is hyperbolic for all a i> O. 

3. Var ia t iona l  A p p r o a c h  to  Descr ib ing  Two-Ve loc i ty  H e t e r o g e n e o u s  I n c o m p r e s s i b l e  
Media .  Let us derive equations of motion for a heterogeneous two-velocity medium. The components of the 
medium are assumed to be incompressible. In the adopted adiabatic approximation there is no dependence 
on entropy. 

Variational Pr inc ip l e  and Conservation Laws. For the case of incompressible moving media composing 
a heterogeneous two-velocity medium, there is one more constraint, which corresponds to the condition of 
compatible deformation of the two components. We introduce the volumetric concentrations of the components 
al = pl/pl and v~2 = p2/p2 by expressing the partial densities of the two components in terms of the physical 
densities/~I and/~2, which are constant by virtue of the incompressibility of the moving media. It is necessary 
to note that the change in densi typ can be due only to a change in the ratio components 1 and 2 in a unit 
volume of the two-velocity medium. Then, the additivity of mass leads to the following additional constraint 
on the volumetric concentrations: 

(~1 + ~2 = 1. (3.1) 
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In the formulation of the variational principle, the presence of constraint (3.1) is taken into account 
like conditions (2.2) and (2.3) using the Lagrange multiplier 

,~ + - - - - ~ -  , 

llRn 

In what follows, it is more convenient to use the variables p~ and p2 rather than c~ and c~2. Finally. 
the Lagrangian takes the form 

L__ ?alu~l____~ 2 p2lu2l._.....~ 2 W(pl,p2,1wl)_pa(~if+u~Lk)_p2(~2t+u~2~2,k)+7 pl + = - - i  . (3.2) 
2 + 2 P2 

Converting (3.2) to the Lagrangian variables ~a and #b given by relations (2.5), we find that  the 
Lagrangian L is a function of the variables Pl, p2, ~ ,  ~,~, r/~, ~/b~, ~l t ,  ~l,k, ~2~, ~2,~, and 7. 

Variation over the Lagrange multipliers qo~, c22 , and 7 gives constraints (2.2) and (3.1) imposed on the 
system: 

,~L Op~ ~fL Op2 ,fL 
L~t - 6qo----~ - 0---t- + div (plUl), L~~ ~ 6qO2 --  0"~- -[- div(p2u2), L ' t -  ~'7 = 31 + 32 - 1. 

The variations over the partial densities pl and p2 have the form 

6L lUl l  2 OW u~l ,k  + 7 6L [u2l 2 OW k "7 
Lpl = 6pl 2 Opl q91t "Z",pl Lp2 --'- 6p2 2 Op2 r u2q~ + "=-P2 

and allow one to determine the total  derivatives of the Lagrange multipliers: 

d l ~  uxk~l,k= lull z OW 7;  (3.3) 
= ~1~ + 2 lO'7 + -:-pl dt 

d2~z u~2,k = luzl2 Ow ~ (3.4) 
= ~P2t + 2 20'~p-- + ="P2 dt 

Using the Lagrange function (3.2), it is possible to introduce a pressure p according to the thermodynamic 
definition of pressure. Indeed, summing up relations (3.3) and (3.4), multiplied by Pl and P2, respectively, we 
have 

OW OW 
p_-- L = --y - W + 71 ~ + p2 0p2' (3.5) 

where 7 determines the  correction to the pressure due to the condition of compatibili ty of the components. 
To obtain the law of conservation of momentum,  we deduce an expression similar to (2.8). It 

characterizes the uniformity of space and has the form of a conservation law: 

~k = Pl,kLaa + P2,kLax + qol,kL~,a + qo2,kL~o2 + ~a, kLa + Y~kLb + 7,kL'r 

O (  OL OL OL OL ) 
= ~ - ~,~ ~ - ~ --a~ - ~1,~ ~ - ~2,~ 

o ( . OL 'A at. at` at. ) 
+ 0 - ~  _-~,* o~,~ O,,bm ~1,* a~l,m ~2,k O~2,--: + LSr_. (3.6) 

The partial derivatives in (3.6) are found with allowance for relations (2.5): 

OL ( OW ) OW 
--~,a k ~ = ~,akX,m a PlUlrn "1- OW""" ~ -- plqOl,m = p l U l k  + C~W""" ~ -- Pl~l,k,  

OL ( O W  ) O W  m rn 
-~ '~  0~,% = ~,~z,~u'~ m u . ,  + Ow--- ~ - p1~o1,. = m~,~kuT + ~ Ul - p~o~,k~,l �9 
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Similarly, 

- ,7,~ ~O L o w O L 
Orlbt = p2u2k OW k P2~2,k, --~91,k Oq~l t = ~l,kPl,  

OL OW um OL 

OL OL 
--~l,k 0~Ol,r n = Pl~l,ktt?, --~2,k 0~2,m = P2~P2'ktt~n" 

As a result, the law of conservation of momentum (3.6) takes the form 

oj, o ( ow : L,r) 0. at  + ~ PlUlkU? + P2tt2kU~ -- OW ' ' ~  + = 

The energy conservation law reflecting the uniformity of space is described by the expression - E  = 
pltLa I + p2tLa 2 + ~oltL~ol + ~2tL~o~ + ~L,,  + #~Lb + "TtLv, which also has divergent form 

~ = g  ~'o~-~+~o%7+~.o-~, +~2, o-~2, ~ ,  r ~ ~,o-~, +~ , ,~+:~ ,~-~ , ,  .(3.s) 
Calculation of the partiM derivatives in (3.8) gives the energy conservation law in obvious form. We 

have 

8L OW ~ t OL ~' ~ = ~,~lu~l 2 + ~ , , ~  - pl~,~,~,~, ~ .  ~ = - ~ . p ~ ,  

OL 
OL OW ttk2 _ p2~o2,kttk2, ~02t Ot#2t --~~ rhb ~ = p2]U2[ 2 -- OW k = 

OL OW ,n ~ OL 
a r ~---=~Ul ~ PI~PI'rnUl tt1~ ~Olt O~l,k 

~ 2 k OW OL t/ --- p2lu2l u2 Ow m u,~u~2 _ ,n  k = k -- ~ '  P2~2'mtL2 U2~ ~02t ~2 ,k  --P2~2tu2" 

Hence, 

0 ( g + P l ] U l ] 2  ~LP2'~212) + 0 ( p l t t k ( ~ - l t -  ~-~1 ) 

+p2tt2k + ~ P 2  "~" 0- -~  (Ul ttl --~2 it2) -- ')'(~lttl k + = 

Expressing 7 in terms of the known thermodynamic functions (3.5), we obtain the energy conservation 
law for a two-velocity medium with incompressible components: 

OW O W \  k 
+0-~ 

The system of conservation laws for a two-velocity heterogeneous incompressible medium (2.2), (3.7), 
and (3.9) is written in vector form 

Opl Op2 
Ot + d i v ( p l u l ) = O ,  Ot +div(p2u2)=O,  

( ow ) O(plul+p2u2)+div plul|174174 = 0 ,  
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O--t PllUl + ~ P 2 l U 2 l ' + W - W ~ w )  + d i v ( p l u l  +~-~1)  +p2u2 + 0pz)  

o w  o w  0 

System of Equations for Plane Waves. To study the problem of the stability of the medium described, we 
examine the propagation of plane waves in an one-dimensional approximation. As a simplifying condition we 
assume that the internal energy is a quadratic function of the relative velocity of the components (condition A) 
U = e(pl,p2) + aw2/2 and W = r - aw2/2, where a is a positive constant. 

For incompressible media, pl and p2 are not independent functions: pl = i l a  and p2 = i2(1 - a),  
where a = a l  and a2 = 1 - a .  As a consequence, the thermodynamic system is a two-parameter system: 

i s .  (3.10) 

In what follows, we restrict ourselves to the one-dimensional case of system (2.2), (3.7), and (3.9). 
Within the framework of the adopted assumptions, the laws of conservation of mass (2.2) reduces, by virtue 
of the geometrical relation (3.1), to the form 

at + (aul)z = 0; (3.11) 

(aua + (I - a)us)z = O. (3.12) 

From Eq. (3.12) it follows that  value of the expression aUl + (1 - a)us does not depend on x. Assuming that 
the sources of mass are absent at infinity, we set 

aUl + (1 -- a)u2 = 0. (3.13) 

Then, Eq. (3.11) and the energy conservation law form the independent subsystem 

at  + ( a u , ) .  = O, 

with additional constraint (3.13). 
From condition (3.13), it follows that 

Ul = --(1 - a)w, us = aw, w = us - Ul. (3.14) 

Using (3.14), we arrive at the  following system of two equations for the variables a and w: 

a t  -- ( a ( l  - a)w)z = O; (3.15) 

w 2 w s 

- i , a ( 1  - a )  3 T - i s a 3 ( l  - a )  5 -  + a ( 1  - ~ ) ~ o z  ~ = 0 (3 .16)  

[the function Z is introduced in (3.10)1. 
System (3.15) and (3.16) is equivalent to the equations 

at  - a(1 - a)wz - (1 - 2a) w a x  = 0; (3.17) 

( i , (x  - o)  + i2~ + a)w, + (is - i , ) ~  a ,  + ( - i , ( 1  - a) s + i s a  2 

-3a (1  - 2a))w w, + ( - z ~  + (i ,(1 - a)  + bsa + 2a)w s) a~ = o, (3.18) 

where a = a/a(1 - a) and Z~ = OZ/Oa. Solving Eqs. (3.17) and (3.18) for the time derivatives, we finally 
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obtain 

c~t - c~(l - a)wx - (l - 2c~)w c~x = O; (3.19) 

Z~ I 1 
Wt -- " ~  Otx -- -~ (~l ( 1 - -  a) -- ~20t + 35(1--  20t) ) W Wz + ~ (t~,c~ + t~2(1- ~ ) +  2h)w2 ~z = 0 ,  (3.20) 

where A = t~l(1 -- o) +/~2~ + a/c~(1 -- o~). We note that A > 0 for all values 1 >~ ~ ~> 0 and a > 0. 
Hyperbolicity of the Equations of Motion of Two-Velocity Heterogeneous Media. System (3.19) and (3.20) 

can be written in matrix form 

Ul -- Aux  -~ 0' u ~-'~ (~162 A = (  al'a21 a22a12) , (3.21) 

where 
1 1 

all  = (1 -- 2c~)w, a21 = S Z= - ~ ( t ha  + ,~2(1 - ~) + 2a) J ,  

1 
a ,~  = ~ ( 1  - a ) ,  a22 = ~ ( k l ( 1  - ~ )  - k 2 a  + 3a(1 - 2 a ) )  w .  

The eigenvalues of the matrix A are determined from the equation det IA - A I [ =  0: 

A 2 - ( a l l + a 2 2 ) A - ( a 1 2 a 2 1 - a l l a 2 2 )  = 0 .  

For roots of Eq. (3.22) to be real, it is necessary that the discriminant 

D = ( a l l  + a22) 2 + 4(a12a21 -- a l l a22)  = ( a l l  -- a22) 2 + 4a12a21 

be positive. In D we separate terms that depend on the relative velocity: 

D = 4  ~( ~)z~§ 

(3.22) 

(3.23) 
b = ~(I - ~)(a ~ I -;-~(1-6~(1 ~-)- ~) 

- 3 a ~ , ~  - 3 a ~ ( i  - ~ )  - ~,~/. 

From (3.23) it follows that in the absence of the relative velocity, system (3.21) is hyperbolic. Indeed, the 
condition of hyperbolicity reduces to the condition of positiveness of the expression 

(OZ) (02U'~ : 611/~2_ 2~12/~1# 2 "4" r > 0, 
= k 0 a 2 )  

which corresponds to the condition of thermodynamic stability of the material. 
Generally, the condition of hyperbolicity of system (3.21) has the form 

gg > A~(I_~)"  

I f / )  > 0, discriminant (3.23) is positive. We consider the expression a2(1 - a)2D. The condition of 
positiveness of D is equivalent to the positiveness of the second-order polynomial in a: h(a) = pa 2 -  q a - r  > O, 
w h e r e  p --  t - 6 ~ ( 1  - ~ ) ,  q = 3 ~ 2 ( 1  - ~ ) ~ ( h ~  + ~2(1  - ~ ) )  > 0,  a n d  ," = ~ , ~ 2 ~ 3 ( 1  - ~ ) a  > 0. 

For each fixed a > 0, there is apparently a region of volumetric concentrations ~ (in a small 
neighborhood of values ~ = 0 and ~ = 1) for which h(a) is positive, and, hence, system (3.21) is hyperbolic. 
When ~ belongs to the interval [1/2 - 1/(2~v/'3), 1/2 + 1/(2v~)],  the function h(a) is negative (p < 0) and the 
model ceases to be hyperbolic for a great velocity difference. 

Conc lus ion .  A generalized. Hamilton variational principle of the mechanics of two-velocity media is 
proposed. A Lagrange function is constructed as the difference between the kinetic energy of an element 
of the medium and the thermodynamic potential, which is the conjugate of internal energy with respect to 
hydrodynamic variables. This definition of a Lagrangian is general for media whose internal energy depends 
on thermodynamic variables having the sense of time derivatives. 
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The generalized Hamilton variational principle was used to formulate the equations of motion of 
homogeneous and heterogeneous two-velocity continua. Divergent laws of conservation of the total momentum 
and total energy of the medium are deduced. 

It is proved that the convexity of the internal energy ensures the hyperbolicity of the one-dimensional 
plane-wave flow equations linearized for the state of rest. Thus, the internal energy is a function of both the 
phase densities and the modulus of the phase-velocity difference. 

It is proved that the dependence of the internal energy on the modulus of the relative velocity ensures 
that the equations of heterogeneous media with incompressible components are hyperbolic for low volumetric 
concentrations of the phases and any relative velocity of motion of the phases. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01641a). 
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